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                                 [ If a, b,be positive  and (b/a)

|n|
 <10

10
, (b>a), then the 

equation a
n
+b

n
=c

n 
may be solved for n by repeated application of the formula                    

n= [log4][log{c
2
-(a-b)

2
}-log(ab)]

-1] 
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. I will feel extremely grateful to all the learned Mathematicians in case if 

they provide proper guide line to the solution. 
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                                                                     Retd. Principal, Janta Inter College, Ramkola  

                                                                                                                         (Kushinagar) 

 

 

 

                   After reading the solution of the equation a
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To solve the equation a
n
+b

n
=c

n
 for n, we construct a ∆ABC, 

                              B 
 

 

 

                                                         c' 

                                                                              c 

                                     a 
 

 

 

 

 

                                             C                b'                      A'                           A 

                                                                                 b 

where AB=c, BC=a, CA=b. 

We take a point A' on CA such that BC=CA'. 

Suppose CA'=b' and A'B=c'. And let 

111 nnn
cba


 ...........(i), 

111 nnn
cba  ...........(ii). 

Then the principle of solving the equation a
n
+b

n
=c

n
 is based upon two facts 

(A) 11 nn        approximately, when C  ,
2


. 

                               [this approximation may, however, be very rough.] 

                (B)      11 nn        exactly, when C= ,
2


. 

                    [as C→
2

,


 , 1n coincides with 1n ] 

 

B                                                                   c                                                      A  

 
 

For, whenC  , the eqn a
n
+b

n
=c

n
 tends to the identity 

x
1
+y

1
=(x+y)

1
. 

i.e., C   n1. 

                        

b' 
C 

a A' 

b
 

 

 

   c' 
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                            Now considering the eqn (ii) 

                      i.e.,            111 nnn
cba 

               
 

                                or     111 nnn
caa      [a=b'] 

                                 or         112
nn

ca   

                 or                     22 )()2( 11 nn
ca               [squaring both the sides] 

                 or                     11 )()(4 22 nn
ca   

                 or      log4+n1log a
2
    =n1 log c' 

2
   [taking logs on both the sides] 

            =n1 log (a
2
+b' 

2
-2ab'cos C) 

                       =n1 log (2a
2
-2a

2 
cos C)        [a=b'] 

     =n1 log {2a
2
(1-cos C)} 

             =n1 log















 


ab

cba
a

2
12

222
2

 

                    = n1 log
 
















 

ab

abbac
a

2

2
2

222
2

 

      = n1 log 
 







 

ab

bac
a

22
2

 

or log4        =n1 log
 







 

ab

bac
a

22
2

-n1 log a
2
 

          =n1 log
 







 

2

22
2 1

aab

bac
a  

                                                     =n1 log
 
ab

bac
22 

 

                                or n1             =
 
ab

bac
22

log

4log


           ….(iii) 

                                       =the approximate value of 1n .        [fact (A)] 

i.e., Corresponding  to 1n  we find an 1n , approximately equal to 1n .We shall use this 

result in finding 2n , 3n ,… for the approximate values of 2n , 3n… . 
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                                        Now considering the eqn (i). 

                                              i.e., 111 nnn
cba


   

Replacing 1n  by 1n  and multiplying the new index 1n  by 2n  to balance the equation.                                                                                                                                                    

We get,              2
1

2
1

2
1

nnnnnn
cba



 ........ (iv) 

Applying the result (iii) upon this equation, we find 

                                          n2=
   

11

111
22

log

4log

nn

nnn

ba

bac 
. 

                                             = the approximate value of  2n  [fact (A)]          

Now considering the eqn (iv). 

Replacing 2n  by 2n  and multiplying the new index 21nn  by 3n  to balance the equation. 

We get,         
 3

21
3

21
nnnnnn

ba   3
21

nnn
c



. 

Applying the result (iii) upon this equation, we find   

 n3=
   

2121

212121
22

log

4log

nnnn

nnnnnn

ba

bac 
.  

                                                     = the approximate value of  3n       [fact (A)] 

                                           …………………………………. 

…………………………………. 

We get, 121121121 )()()(
.........  

 rrrrrr nnnnnnnnnnnn
cba .......(v).  

Applying the result(iii) again upon this equation, we find   

                                               nr+1=
   

rr

rrr

nnnnnn

nnnnnnnnn

ba

bac
......

2
......2...

2121

212121

log

4log


 . 

                                                     = the approximate value of  1

rn      [fact (A)]. 
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B                                                      rnnn
c

...21                                                                    A 

                                                                                                                                                                   

                                     rnnn
a

...21                                                  rnnn
b

...21  

                                                                            C 

 

   Now if nr+1→1, it means C→ . Then we must have, 

              111   rr nn .                       [fact(B)] 

   Replacing  1

rn  by 1 in eqn (v),    

   We get,                                  rnnn
a

...21 + rnnn
b

...21 = rnnn
c

...21 . 

   Comparing this eqn to the given eqn a
n
+b

n
=c

n
 ,we have,  

    n1n2n3…..nr  →n 

 or  n1n2n3…..nr nr+1 → n.  [for nr+1→1] 

                                                                                   

N.B. 

Let b>a 

(i) If c≤|(a-b)|,<a,<b, we should replace a,b,c, by their reciprocals and n by  

(-n).(pl. see example 4 on page 12) 

(ii)  a,b, should be positive, or, the term )( rr NN
ba   may be imaginary. 

(iii)  Fortunately, it is easier to make nr+1→1 for the lower  values of (b/a)
|n|

. 

(Pl. see  example 2 on page -8) 

(iv) If (b/a)
|n|

>10 then in the process of finding the values of n, if these values            

fluctuate, we should begin to take the mean {one or more than one times 

according to the value of (b/a)
|n|

} of the two successive values of n,i.e., our 

intention is to make nr+1→1, and the process of making so is arbitrary. 

(Pl.see example 3 on page -9) 

(v) We may compare this process, to the process, invented by Newton to find the 

approximate solution of equations. 

(Pl. see the “Text-Book On Differential Calculus” by Gorakh Prasad,D.Sc.,  

Eleventh Edition-1968,page-81) 

(vi) As we proceed, better value of n is obtained. i.e.,n1n2...nr+1 is better than n1n2...nr. 
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Example-1 

 

Let us solve the eqn 

7
n
+8

n
=6

n
 

Let N1,N2,……,Nr are the successive(approxi.) values of n obtained in solving the 

above equation.(i.e., Let Nr=n1n2n3….nr) 

 

                         Then  N1 






87

)87(6
log

4log
221n -2.94953969,              [n1=-2.94953969] 

 

                        N2=n1n2=N1 


1

111

56

)87(6
log

4log
22

N

NNN
-3.24627234,           [n2=1.100603037] 

                     N3=n1n2n3=N2 


2

222

56

)87(6
log

4log
22

N

NNN
-3.242835749,          [n3=0.998941373]   

              N4= n1n2n3n4=N3 


3

333

56

)87(6
log

4log
22

N

NNN
-3.242880485,     [n4=1.000013795] 

           N5= n1n2n3n4n5=N4 


4

444

56

)87(6
log

4log
22

N

NNN
-3.242879904,      [n5=0.99999982] 

                  N6= n1n2n3n4n5n6=N5

5

555

56

)87(6
log

4log
22

N

NNN


,                              [n6=1.000000002]  

                                   =N5×1.000000002=-3.24287991 

Here  1.000000002 is nearly equal to 1, 

 

n =-3.24287991… 
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Example-2 

 

Let us solve the eqn 

7
n
+50

n
=5448

n 

We have been well familiar with n1n2n3…nr, so we omit this and we shall write only Nr for                                             

n1n2n3…nr . 

 

                                    Then N1=
 
507

5075448
log

4log
22




=.122161866,        [n1=0.122161866] 

 

                         N2=N1

 
1

111

350

5075448
log

4log
22

N

NNN


 =.123461217,        [n2=1.010636306] 

 

                       N3=N2

 
2

222

350

5075448
log

4log
22

N

NNN


=.123455953,          [n3=0.999957363] 

 

                   N4=N3

 
3

333

350

5075448
log

4log
22

N

NNN


=.123455975 ,            [n4=1.000000178] 

 

                                             N5=N4

 
4

444

350

5075448
log

4log
22

N

NNN


,                [n5=0.999999999] 

     =N4×.999999999=.123455975 

Here .999999999 is nearly equal to 1, 

 

                                                             n=.123455975… 
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Example-3 

 

Let us solve the eqn 

3
n
+7

n
=7.000000015

n
 

This miscellaneous example will clear, what we have written in N.B. (iv) on page-6. 

Hear N1=

73

)73(000000015.7
log

4log
22




=3.067 

 

                      N2=N1

1

111

21

)73(000000015.7
log

4log
22

N

NNN


=6.488 

 

                        N3=N2

2

222

21

)73(000000015.7
log

4log
22

N

NNN


=13.014 

 

                        N4=N3

3

333

21

)73(000000015.7
log

4log
22

N

NNN


=25.964 

 

                      N5=N4

4

444

21

)73(000000015.7
log

4log
22

N

NNN


=6.006 

There is fluctuation, 

                                          6N  = 
2

1
(N4+N5) =15.985 
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[ 2
3

6
,

6

733010

3

7 6










digits

N

,We should take the mean (two times) of the two successive 

values of n.] 

 

Now N7=N6

6

22

21

)73(000000015.7
log

4log
666

N

NNN


=30.823 

                                N8=   694.19
2

1

2

1
667 








 NNN  

[ 3
3

8
,

8

17657227

3

7 8










digits

N

(near an integer). We should take the mean (three times) of 

the two successive values of n.] 
Now   N9=N8 

8

888

21

)73(000000015.7
log

4log
22

N

NNN


=21.839 

                                N10=   

















 8889
2

1

2

1

2

1
NNNN =19.9622 

 

              N11=N10 

10

101010

21

)73(000000015.7
log

4log
22

N

NNN


=20.3496 

   N12=   

















 10101011
2

1

2

1

2

1
NNNN =20.0106 
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                                  N13=N12

12

121212

21

)73(000000015.7
log

4log
22

N

NNN


=20.0838 

 

        N14=   

















 12121213
2

1

2

1

2

1
NNNN =20.01975 

 

                  N15=N14

14

141414

21

)73(000000015.7
log

4log
22

N

NNN


=20.03361 

         N16=   

















 14141415
2

1

2

1

2

1
NNNN =20.02148 

 

     N17=N16 

16

161616

21

)73(000000015.7
log

4log
22

N

NNN


 

                                           =N161.000087458=20.02 

Here 1.000087 is nearly equal to 1, 

 we may conclude that n=20.02…. 

If we proceed further and further to find N18,…,N30,we find the more accurate value of 

n as n=20.0216615 
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Example-4 

                                                      Let us solve the eqn 

                                      17
n
+25

n
=7

n
 

Here 7<|17-25|,<17,<25. So,we replace 17,25,7 by their reciprocals and n by (-n) to get 

                                                         nnn   111 72517                               

Solving this eqn for (-n), we get 

                                N1=
 

  1

21121

2517

)2517(7
log

4log








=0.646968374 

                               N2=N1

  1

111

2517

)2517(7
log

4log
22

N

NNN








=0.648961768 

                                N3=N2

  2

222

2517

)2517(7
log

4log
22

N

NNN








=0.648953113 

                                N4=N3

  3

333

2517

)2517(7
log

4log
22

N

NNN








 

                                    =N31.000000058=0.64895315 

     Here 1.000000058 is nearly equal to 1 

                               n =0.64895315 

                              i.e., n=-0.64895315 
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                                                              Example-5 

The population growth of three cities A, B&C are 5%, 10% and 15% respectively per 

year. If their populations are the same at this time, to determine the time in years when 

the sum of the populations of cities A&B will be equal to the population of city C 

alone. 

Solution 

Let their population at this time be P and the required time be n.Then 

P

n











100

5
1 + P

n











100

10
1 = P

n











100

15
1  

     or 1.05
n
+1.10

n
=1.15

n
 

                       Then               N1=
 

10.105.1

10.105.115.1
log

4log
22




=10.38 

                         N2=N1

 
1

111

155.1

10.105.115.1
log

4log
22

N

NNN


=10.6936 

 

 

                       N3=N2

 
2

222

155.1

10.105.115.1
log

4log
22

N

NNN


=10.688 

 

                                             N4=N3

 
3

333

155.1

10.105.115.1
log

4log
22

N

NNN


 

                                                 =N31.000049 =10.68852 

                           Here 1.000049 is nearly equal to 1, 

The required time will be 10.68852 years (approxi.).  If  we proceed further and 

further to find N5,N6,we find the more accurate value of n as n=10.68852122… 
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Example-6 

 

The increase in diameters of three plants A, B&C are 30%, 40%, and 45% respectively 

per year.If their weights vary as the cubes of their diameters, to determine the time in 

years when the sum of the weights of the plants A&B will be equal to the weight of the 

plant C alone, assuming that the diameter of each plant be the same at this time (i.e., 

when t=0). 

 

Solution  

    Let when t=0, the diameter of each plant be D and the required time be n, then  the 

wts of the plants A,B and C will be K

3

100

30
1






















n

D ,K

3

100

40
1






















n

D and 

K

3

100

45
1






















n

D respectively, where K is proportionality constant. 

Now according to the above condition. 

K

3

100

30
1






















n

D + K

3

100

40
1






















n

D =K

3

100

45
1






















n

D  

                             i.e., 1.3
3n

+1.4
3n

=1.45
3n

 

     If we apply the previous procedure to find N1,N2,…,N8, we find  

                                                3n=10.66242126 

                                           i.e., n=3.55414042…years. 


